一、拉格朗日余項(xiàng)表達(dá)式?
拉格朗日余項(xiàng)的泰勒公式:f'(x)=n+1。泰勒公式是一個(gè)用函數(shù)在某點(diǎn)的信息描述其附近取值的公式。如果函數(shù)滿足一定的條件,泰勒公式可以用函數(shù)在某一點(diǎn)的各階導(dǎo)數(shù)值做系數(shù)構(gòu)建一個(gè)多項(xiàng)式來近似表達(dá)這個(gè)函數(shù)。
函數(shù)(function)的定義通常分為傳統(tǒng)定義和近代定義,函數(shù)的兩個(gè)定義本質(zhì)是相同的,只是敘述概念的出發(fā)點(diǎn)不同,傳統(tǒng)定義是從運(yùn)動(dòng)變化的觀點(diǎn)出發(fā),而近代定義是從集合、映射的觀點(diǎn)出發(fā)。函數(shù)的近代定義是給定一個(gè)數(shù)集A,假設(shè)其中的元素為x,對A中的元素x施加對應(yīng)法則f,記作f(x),得到另一數(shù)集B,假設(shè)B中的元素為y,則y與x之間的等量關(guān)系可以用y=f(x)表示,函數(shù)概念含有三個(gè)要素:定義域A、值域B和對應(yīng)法則f。其中核心是對應(yīng)法則f,它是函數(shù)關(guān)系的本質(zhì)特征。
二、拉格朗日余項(xiàng)公式和用法?
線性插值也叫兩點(diǎn)插值,已知函數(shù)y = f (x)在給定互異點(diǎn)x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構(gòu)造一個(gè)一次多項(xiàng)式:P1(x) = ax + b,使它滿足條件:P1 (x0) = y0, P1 (x1) = y1
其幾何解釋就是一條直線,通過已知點(diǎn)A (x0, y0),B(x1, y1)。
線性插值計(jì)算方便、應(yīng)用很廣,但由于它是用直線去代替曲線,因而一般要求[x0, x1]比較小,且f(x)在[x0, x1]上變化比較平穩(wěn),否則線性插值的誤差可能很大。為了克服這一缺點(diǎn),有時(shí)用簡單的曲線去近似地代替復(fù)雜的曲線,最簡單的曲線是二次曲線,用二次曲線去逼近復(fù)雜曲線的情形。
三、泰勒公式拉格朗日余項(xiàng)取值范圍?
拉格朗日(Lagrange)余項(xiàng): ,其中θ∈(0,1)。 拉格朗日余項(xiàng)實(shí)際是泰勒公式展開式與原式之間的一個(gè)誤差值,如果其值為無窮小,則表明公式展開足夠準(zhǔn)確。 證明: 根據(jù)柯西中值定理: 其中θ1在x和x0之間;繼續(xù)使用柯西中值定理得到: 其中θ2在θ1和x0之間;連續(xù)使用n+1次后得到: 其中θ在x和x0之間;
四、泰勒公式的拉格朗日余項(xiàng)怎么理解?
拉格朗日(Lagrange)余項(xiàng): ,其中θ∈(0,1)。 拉格朗日余項(xiàng)實(shí)際是泰勒公式展開式與原式之間的一個(gè)誤差值,如果其值為無窮小,則表明公式展開足夠準(zhǔn)確。 證明: 根據(jù)柯西中值定理: 其中θ1在x和x0之間;繼續(xù)使用柯西中值定理得到: 其中θ2在θ1和x0之間;連續(xù)使用n+1次后得到: 其中θ在x和x0之間;同時(shí): 進(jìn)而: 綜上可得:
五、拉格朗日基函數(shù)?
一.線性插值(一次插值) 已知函數(shù)f(x)在區(qū)間[xk ,xk+1 ]的端點(diǎn)上的函數(shù)值yk =f(xk ), yk+1 = f(xk+1 ),求一個(gè)一次函數(shù)y=P1 (x)使得yk =f(xk ),yk+1 =f(xk+1 ), 其幾何意義是已知平面上兩點(diǎn)(xk ,yk ),(xk+1 ,yk+1 ),求一條直線過該已知兩點(diǎn)。
首先,插值法是:利用函數(shù)f (x)在某區(qū)間中插入若干點(diǎn)的函數(shù)值,作出適當(dāng)?shù)奶囟ê瘮?shù),在這些點(diǎn)上取已知值,在區(qū)間的其他點(diǎn)上用這特定函數(shù)的值作為函數(shù)f (x)的近似值,這種方法稱為插值法.
其目的便就是估算出其他點(diǎn)上的函數(shù)值.
而拉格朗日插值法就是一種插值法.
六、高等數(shù)學(xué)入門——帶拉格朗日余項(xiàng)的泰勒公式?
1.帶皮亞諾余項(xiàng)泰勒公式的不足。
2.帶拉格朗日余項(xiàng)的泰勒公式。
3.對(拉格朗日余項(xiàng))泰勒公式的一些說明。
4.誤差分析的一般結(jié)論(實(shí)際應(yīng)用時(shí)須具體問題具體分析)。
5.附錄:泰勒中值定理2的證明。
擴(kuò)展資料:
高等數(shù)學(xué)指相對于初等數(shù)學(xué)而言,數(shù)學(xué)的對象及方法較為繁雜的一部分。廣義地說,初等數(shù)學(xué)之外的數(shù)學(xué)都是高等數(shù)學(xué),也有將中學(xué)較深入的代數(shù)、幾何以及簡單的集合論初步、邏輯初步稱為中等數(shù)學(xué)的,將其作為中小學(xué)階段的初等數(shù)學(xué)與大學(xué)階段的高等數(shù)學(xué)的過渡。
七、二元函數(shù)拉格朗日定理?
拉格朗日定理
數(shù)理科學(xué)定理
拉格朗日定理存在于多個(gè)學(xué)科領(lǐng)域中,分別為:流體力學(xué)中的拉格朗日定理;微積分中的拉格朗日定理;數(shù)論中的拉格朗日定理;群論中的拉格朗日定理。
正壓理想流體在質(zhì)量力有勢的情況下,如果初始時(shí)刻某部分流體內(nèi)無渦,則在此之前或以后的任何時(shí)刻中這部分流體皆為無渦。以某一起始時(shí)刻每個(gè)質(zhì)點(diǎn)的坐標(biāo)位置(a、b、c),作為該質(zhì)點(diǎn)的標(biāo)志。 如果在一個(gè)正整數(shù)的因數(shù)分解式中,沒有一個(gè)數(shù)有形式如4k+3的質(zhì)數(shù)次方,該正整數(shù)可以表示成兩個(gè)平方數(shù)之和。
八、拉格朗日乘數(shù)法求需求函數(shù)?
拉格朗日乘數(shù)法是多元微分學(xué)中用來求函數(shù)z=f(x,y)在滿足g(x,y)=0條件下的極值問題的方法:通過設(shè)F(x,y)=f(x,y)+λg(x,y),其中λ稱為拉格朗日乘數(shù),并求F(x,y)的極值點(diǎn)求得條件極值的方法
九、皮亞諾余項(xiàng)和拉格朗的區(qū)別?
簡單說 皮亞諾余項(xiàng)用在求極限地題目中比較多 比如說你把一個(gè)函數(shù)寫成皮亞諾形式 展開到n階導(dǎo)數(shù)再加上個(gè)高階無窮小的話,前提條件并不要求函數(shù)具有n+1階導(dǎo)數(shù).拉格朗日感覺一般是用在證明題中,由于余項(xiàng)是用拉格朗日中值定理求出來的,所以展開到n階的話,一定要求函數(shù)具有n+1階導(dǎo)數(shù).
十、拉格朗日條件?
[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:
(1)在閉區(qū)間[a,b]上連續(xù);
(2)在開區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得
顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時(shí)的特殊情形,拉格朗日中值定理是羅爾定理的推廣。